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Abstract 

Scientists are constantly searching for a viable replacement for fossil fuels. A commonly 

discussed option is hydrogen. However, hydrogen availability and production cost continue to be 

a problem for those promoting it as an alternative. This study proposed that the amount of the 

expensive catalyst platinum (Pt) needed as a water-splitting catalyst may be drastically reduced 

by using it to decorate carbon nanotubes (CNTs) on a nanoscale, which would then be used to for 

the electrochemical deposition of water. In this way, hydrogen could be efficiently and cheaply 

produced while simultaneously stretching the efficacy of Pt, increasing the availability of 

hydrogen and promoting its use. *Unfortunately, due to COVID-19, this research could not be 

completed, and no results were produced to answer the research question. *  

Keywords: nanotube, catalyst platinum, water-splitting 
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Introduction 

With the rise in global warming and increasing environmental concerns about the use of 

fossil fuels, scientists are turning to environmentally friendly “green” energy alternatives. 

Several prominent options include solar and wind energy, and hydrogen fuel. Hydrogen, the 

lightest element on the periodic table, has a high-energy content and emits no harmful 

greenhouse gases when used (Zhang et al., 2016). It is useful as a sustainable fuel not only 

because it is a plentiful element in the environment, but also because it is relatively inexpensive 

to produce. However, despite hydrogen’s abundance, it is not an easy fuel to obtain and store 

because no source of unbound hydrogen molecules exists in nature (Li & Zheng, 2017). Instead, 

existing substances that include hydrogen must be separated to free their hydrogen components; 

usually this substance is water. Water is comprised of two hydrogen and a single oxygen 

molecule, as shown by its chemical formula H2O. As a non-toxic and easily obtainable 

substance, water is an ideal source for hydrogen production. The process for separating water 

into its atomic components is known as water-splitting. A recent, popular development related to 

water-splitting hydrogen production is the use of photocells and photocatalysts thus, sunlight 

driven operations. This illustrates the potential for green fuels not only as a replacement for fossil 

fuels in the energy sector, but also fossil fuel free energy production. The splitting of water can 

be accomplished multiple ways, including dividing the gases in steam or using electrolysis—the 

application of an electrical current—which is the method used in this study. Water-splitting 

through electrolysis needs several parts. First, it requires a source of electricity and a pathway for 

electricity to reach the water. Second, some type of cell must act as a center for the reaction. 

Finally, a catalyst is needed to initiate the reaction (Vineesh et al., 2016; Yamada & Domen, 
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2018). Sources of electricity and ways to deliver it can be found using any electrical device; 

however, centers and catalysts are not so common.  

For this study, carbon nanotubes (CNT), a 

model of which is depicted in Figure 1 

(Boyes, n.d.), will be used as a center for the 

reaction. CNTs are microscopic, hollowed 

cylinders made of atom-thick carbon walls 

(Akbari & Buntat, 2017). They are available 

in simple form, called single wall carbon 

nanotubes (SWCNT), or in complex, 

multilayered form known as multiwall carbon nanotubes (MWCNT), modeled in Figure 2 below 

(Nanoelectronics Laboratory of..., 2019), which involve different sizes of tubes “nesting” 

together.  

CNTs are excellent candidates for water-splitting reactions for several reasons: Not only carbon, 

the cylinders’ base unit, is an inherently stable atom, 

CNTs also boast large surface areas and can conduct 

electricity (Uzundurukan & Devrim, 2019). In a study 

that described them as “bamboo-like,” CNTs were found 

to aid precise control of the experiment because of their 

uniform, predictable structure. The researchers used 

nitrogen-decorated CNTs to break down formic acid, 

finding that CNTs functioned best as catalyst bases and 

performed excellent reduction reactions (Podyacheva 

Figure 1: A single nanotube isolated on white 
(Boyles, n.d.) 

Figure 2: Representation of a multi-walled 
carbon nanotube (Nanoelectronics 
Laboratory of..., 2019) 
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et al., 2019). Another study that surveyed and summarized the use of CNTs in fuel production 

illustrated their capabilities as catalytic enhancers and stabilizers (Akbari & Buntat, 2017). CNTs 

slowed the corrosion of fuel cells, preventing surface oxidation and remaining intact while other 

materials broke down. They also served as electrodes, centers for electrical and/or chemical 

reactions. Due to their high surface area, which provided much more room for reactions to occur, 

and lightweight composition, which allowed for a higher volume ratio, electron transmission was 

increased, especially when combined with platinum (Akbari & Buntat, 2017). 

 

Research Question 

Can the amount of the catalyst platinum used in water-splitting be reduced without 

compromising the efficiency of hydrogen production by using it to decorate CNTs on a 

nanoscale? 

 

Theoretical Framework – Bond Enthalpy 

The relevant theory is called Bond Enthalpy. This refers to both the theory itself and the 

energy exchange it describes. Heike Kamerlingh Onnes formulated it in the very early 1900s, 

eventually publishing it in 1909. The formal definition of bond enthalpy is given in terms of the 

mathematical equation: 

H=U+pV 

H=enthalpy, U=internal energy, p=pressure, V=volume 
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From this equation, several foundational concepts about energy and the efficiency of its 

production can be drawn. Since enthalpy cannot be directly measured, a system’s change of 

enthalpy is measured instead. This refers to either the energy released or consumed by a 

chemical reaction and can also be expressed as the change in energy caused by a reaction. Bond 

Enthalpy describes energy transfer in forming chemical bonds between atoms. It is always 

positive. In other words, forming a bond will always release energy. It is also a measure of 

thermodynamic potential. Changes in temperature and pressure (if the system is not closed) 

directly affect enthalpy. In order to answer this project’s research question, the question of 

experiment efficiency must also be answered. Bond Enthalpy helps explain this question because 

it provides a measure for the efficiency of hydrogen production. Catalysts, like a CNT-Pt 

electrode, reduce the input energy needed to break an atomic bond (negative enthalpy), but the 

positive enthalpy (output energy from creating an atomic bond) remains the same. So, reaction 

efficiency (input energy divided by output energy) could be calculated using the Bond Enthalpy 

equation. 

Literature Review 

As public attention increasingly shifts to the issue of global warming, the scientific 

community’s attention has followed. In order to contextualize this project’s research in its larger 

field and give the reader a thorough understanding of its parameters, a review of relevant, recent 

literature follows. Recently, this shift has surfaced in the form of green energy research, in the 

hopes of inventing sustainable alternatives to fossil fuels and designing alternative fuel cells. 

Researchers have barely begun to scratch the surface of possibilities in green energy production. 

For example, a Japanese study proposing a sunlight powered hydrogen-production facility 

highlighted the efficiency and potential of this alternate source of power. Fascinatingly, the 



9 
 

entire proposed system was nearly self-sustaining. Excluding routine maintenance, the hydrogen 

factory drew all energy and other necessary inputs from its surroundings (Yamada & Domen, 

2018). This study, which is fully described later, illustrates the exciting and important ideas 

currently circulating in the field of clean energy production, specifically regarding hydrogen. 

Two main developments in these areas are the use of CNTs to enhance catalytic properties of 

platinum in hydrogen-producing reactions and the fine-tuning of variables such as temperature to 

enhance the performance of hydrogen fuel cells.  

CNTs 

CNTs have enormous potential in the field of energy production. This is demonstrated by 

the multitude of literature overviews and research projects devoted to the topic in recent years. A 

study titled Carbon Nanotube-Enzyme Biohybrids in a Green Hydrogen Economy reviewed 

literature on using CNTs as catalysts for producing hydrogen, specifically when combined with 

enzymes. The great majority of the paper’s sources used were less than ten years old and 

originated from a scientific journal. The study mainly articulated the high potential for CNTs to 

be used in the energy due to their inherent chemical characteristics. As a further incentive to 

incorporate such materials, the authors found that they are extremely cost-effective alternatives 

to precious metals previously used, such as platinum. The potential for use of CNTs in all stages 

of hydrogen consumption, from production to storage to conversion, was also highlighted. 

Special emphasis was placed on their use in hydroxide fuel cells (De Poulpiquet et al., 2019).  
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A study by Podyacheva et al. (2019) explored the 

use of nitrogen-doped CNTs in conjunction with 

platinum as a hydrogen-production catalyst in the 

breakdown of formic acid, focusing mainly on 

reducing the temperature threshold for an energy-

producing reaction.  The samples were synthesized 

from the decomposition of two materials, ethylene 

or ethylene-ammonia, in a flow reactor. Platinum was deposited on the CNT and N-CNT surface 

using incipient wetness impregnation and homogenous precipitation. Twenty milligrams of each 

sample were then used in separate formic acid decomposition experiments performed in a 6mm-

inner-diameter quartz reactor. Figure 3 shown also provides a graphical representation of the 

samples’ selectivity, with “im” bars representing impregnated samples and “pr” bars representing 

homogenously precipitated samples (Podyacheva et al., 2019). The turnover frequency was 

measured and then compared to the performance of 1%Pt/N-CNF (carbon nanofibers). Each 

sample (1%Pt/CNTs-pr and 1%Pt/N-CNTs-pr) was used in a formic acid decomposition trial. 

The 1%Pt/N-CNTs performed best in the trials, with the reaction almost completed before the 

reactor reached 200 degrees Celsius. The conclusion stated that the N-CNTs surpassed their 

nitrogen-free counterparts by a factor of three to four. Akbari & Buntat (2016) wrote in Benefits 

of using carbon nanotubes in fuel cells: a review about the use of CNTs in fuel cells. Their 

purpose was to determine different applications for CNTs and discover if they improved cell 

performance. The paper contains five topics related to CNTs and fuel cells. Topics were the 

effect of CNTs on fuel cells, decreasing the use of platinum with CNTs, contact between catalyst 

and CNT support, utilizing CNTs to enhance catalyst function, and CNTs catalyst synthetic 

Figure 3: Selectivity of CNT catalyst versus  
N-CNT catalyst (Podyacheva et al., 2019) 



11 
 

conditions. The authors systematically summarized current research in each category and drew 

applicable conclusions. Practical take-aways of this case study include findings that the addition 

of graphene to catalysts supplemented CNT effectiveness and mixing in alloyed CNTs improved 

the electrocatalytic behavior of platinum (Akbari & Buntat, 2016).  

Another research project, completed in 2009, 

fabricated an electrode detector of hydrogen-

peroxide, specifically as a biosensor and 

medical diagnostic tool. Researchers decorated 

CNTs with platinum and deposited them onto a 

waxed-graphite surface, as shown in Figure 4 

(Shi et al., 2009), to produce an electrode. This 

was accomplished by dispersing CNTs in 

distilled water, adding a chemical containing 

platinum, and drying the mixture at 500 degrees Celsius. To form an electrode, graphite was 

polished and sonicated, then dipped into the CNT-Pt powder. Hydrogen peroxide, the substance 

of interest, was diluted 30% with distilled water for electrode testing. The primary testing 

occurred in four hours; 80 cycles were completed in that time frame. Continuous testing over the 

next two months confirmed electrode stability. On average, the CNT-Pt electrodes responded to 

the presence of hydrogen peroxide in five seconds, and final detection performance deteriorated 

to 97% of initial efficiency. Researchers concluded that CNT-Pt waxed graphite electrodes 

performed as excellent catalysts and retained hydrogen peroxide detection abilities well (Shi, Q., 

Zeng, W., & Zhu, Y, 2009). In another research project by Yeon et al. (2019), long-lasting, 

highly durable, corrosion-resistant carbon nano-onions (CNOs), which can be substituted for 

Figure 4: Transmission electphotos of CNT-Pt 
x150 000 (Shi et al., 2009) 
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other carbon-based underlying catalytic material, were produced using laser pyrolysis. An 

infrared CO2 laser was used to form CNOs from ethylene. Using beam distance, gas flowrate and 

other variables, researchers were able to control CNO size, shape, and crystallinity. Finally, the 

substance was heated on a hotplate, stirred, and baked in a furnace at 290 degrees Celsius for 

five hours. Through thermogravimetric analysis, researchers determined that 40% of the liquid’s 

mass was Pt/CNOs. Using a spray-gun, the liquid was applied to a membrane electrode. The 

membrane electrode served as an anode while the control sample, platinum, and carbon black, 

served as the cathode. During trials, researchers varied humidity levels, performed cyclic 

voltammetry, and measured cell impedance and stress resistance. Humidity was varied 100%. 

Cyclic voltammetry voltage ranged from 0.1-1.2V. Cell stress-tests were performed by 

simulating power-on and off procedures. Researchers concluded that not only do CNOs display 

impressive corrosion and damage resistance that lengthens fuel cell life, their production process 

is also highly manipulable, allowing producers to mold output CNO characteristics. In 2019, 

Uzundurukan & Devrim investigated the performance of a Pt/MWCNT catalyst as opposed to a 

Pt/C catalyst (amorphous carbon only). Using two catalyst types, Pt/MWCNT and Pt/C, they 

produced hydrogen from sodium borohydride. Platinum was deposited on the different carbon 

types via microwave-polyol synthesis. The Pt/MWCNT catalyst was found to be 30% Pt by 

weight, while the Pt/C catalyst was 20% Pt. The catalysts were studied and their surface 

structures mapped using transmission electron microscopy, high-resolution transmission electron 

microscopy and x-ray diffraction. A thermal analyzer was also used, in the temperature range of 

100-900 degrees Celsius, to detect Pt loading. For testing, each catalyst was placed in a heart-

shaped flask in a water bath for even heating. A meter connected to the flask neck was used to 

collect and measure hydrogen production. For the experiment, researchers varied the amount of 
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Pt on the catalyst, the concentration of sodium borohydride and the outside temperature. Each 

test, with its set of variables, was performed at least three times to verify experimental 

reproducibility. Researchers concluded that an increase in temperature and electrolyte 

concentration increased hydrogen generation for both types of catalyst. However, the 

Pt/MWCNT catalyst’s performance was marginally superior to the Pt/C catalyst, which was 

attributed to its low activation energy requirement. The purpose of this research is to create a 

highly efficient nonmetal hydrogen evolution catalyst by doping graphene microtubes (GMT) 

with nitrogen. Researchers combined glycin and dicyandiamide, heating the mixture to 1,100 

degrees Celsius and applying a gaseous nitrogen stream. Tubes with a one to two micrometer 

diameter were formed. The tubes were analyzed using high-resolution transmission electron 

microscopy, x-ray diffraction spectra and x-ray photoelectron spectroscopy. A hydrogen 

evolution reaction was then performed using a 6M potassium hydroxide solution on a rotating 

disc electrode. The N-GMTs completed over one thousand voltammetric cycles with negligible 

performance deterioration. Researchers found that the larger diameter of GMT allowed the 

tubes’ outer and inner surfaces to act as catalytic sites. Furthermore, they stated that N-GMTs 

exhibited impressive durability, and maintained electrochemical stability and current density 

better than other carbon products. Another research project by Zhang et al. (2016), examined 

novel MWCNT configurations and test their effect on catalytic capability in proton exchange 

membrane fuel cells (PEMFC). MWCNTs grown using chemical vapor deposition were 

exfoliated in a furnace at 200 degrees Celsius. The tubes were then mixed with ethylene glycol, 

water and hexa-chloroplatinic acid, and stirred for twenty-four hours. After this, the mixture was 

refluxed, washed with distilled water, and dried. Researchers deposited the resulting powder, 

dissolved in ethanol and Nafion on a glassy carbon electrode. The traditional three-electrode 
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setup was used to electrochemically characterize the Pt-MWCNT catalyst in oxygen and nitrogen 

infused sulfuric acid, before transitioning the catalyst to a membrane electrode fuel cell. A 

graphite plate was placed on either side of the membrane electrode with minimal space between 

them to form the fuel cell, which was supplied with hydrogen and oxygen in gaseous form at 

ninety percent humidity. Results showed that the Pt-MWCNTs exceeded Pt-C performance, 

which researchers attributed to the “unraveled graphene layers” that more effectively exposed 

tube surface area to the gasses and provided a larger catalytic space (Sahoo, Scott & 

Ramaprabhu, 2018). Another article analyzed the catalytic performance of Pt-CNTs alongside 

cesium dihydrogen phosphate as an electrolyte, as compared to Pt-C catalysts with the same 

electrolyte. Researchers formulated the cesium dihydrogen phosphate in-lab. A unique 

deposition technique was followed decorate the nanotubes with platinum, before being dried into 

powder. The MWCNTs were then electro-sprayed onto the carbon paper electrodes by dispersing 

them in water together with cesium dihydrogen phosphate; two batches of this mixture were 

prepared and a small amount of a commercial dispersant solution, two separate varieties, were 

added to each. Electrodes were then sandwiched between stainless steel, which were screwed 

together. Gaseous hydrogen was bubbled through water to humidify it before sending it to the 

electrode catalyst. Three sets of each catalyst were prepared and tested, differentiated by 

platinum content and dispersant solution. The types were plain Pt-CNTs (30% Pt by weight) as a 

control group, the same with a cesium dihydrogen phosphate added, then 40% Pt and 46% Pt, 

also with cesium dihydrogen phosphate. Researchers concluded that even with minimal Platinum 

content, the Pt-CNTs successfully reduced protons and oxidized hydrogen in solid fuel cells. 

They also noted that the electro-spray technique could be easily modified based on research 

demand (Thoi, Usiskin & Haile 2015). Rather (2019) wrote in Preparation, characterization and 
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hydrogen storage studies of carbon nanotubes and their composites: A review about projects 

involving CNTs, specifically relating to hydrogen storage. Rather divided the topic into three 

sections: preparation of nanocomposites, characterization, and hydrogen storage. In the first 

section, CNTs, metal compounds and a combination of the two are discussed. The CNT 

formation method chemical vapor deposition (CVD), which enables manufacturers to control 

tube diameter and scale, was described; this was followed by an explanation of CNT metallic 

composites. Metals are ball-milled, a process that reduces their size to the nanometer scale, then 

incorporated into CNT structure through various methods like ultrasonication and sputtering 

deposition.  

 

Figure 5: Summary of experimental results of hydrogen uptake measurement in CNTs performed 
at different temperatures and pressure (Rather, 2019) 

Secondly, the characterization portion explained analytical procedures for CNT samples. 

Frequently, researchers use X-ray diffraction (XRD), thermogravimetric analysis (TGA), energy 
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dispersive X-ray spectroscopy (EDS) and the Brunauer-Emmett-Teller (BET) surface area 

method, among others. Lastly, the author examines methods of hydrogen storage using CNTs, 

using a chemisorptive formation of reversible carbon-hydrogen bonding. As shown in Figure 5 

(Rather, 2019), carbon-based materials in various forms could store as much as 67% of their 

weight in hydrogen. Researchers concluded that metal oxides and platinum increase CNT storage 

capacity, as did activation via potassium hydroxide.  

Platinum Catalyst 

Platinum is a common catalyst, especially in hydrogen production reactions. High cost is 

an obvious limitation of its use, but rather than eliminate it researchers are exploring methods to 

reduce the amount of platinum needed for effective catalyzation. The following reviews explore 

this and various other problems relating to platinum use. Korchagin et al. (2017) looked at the 

possibility of reducing the amount of platinum by 30% by adding CNTs and using a rotating disk 

electrode in a fuel cell. Researchers used two catalyst types, 60 Pt 9100 and 40 Pt/CNT, for the 

fuel cell tests. To synthesize the 40 Pt/CNT, CNTs were combined with a chloroplatinate in 

glycerol. The catalyst solids were then separated using a centrifuge and dried using a desiccator. 

The resulting powder was dispersed on rotating disk electrodes for use in the hydrogen-air fuel 

cell. One hundred and thirty-five millivolts were applied to the cell and the resulting current was 

measured in several forms: Researchers looked at the current divided by surface area as a whole 

and for area of platinum, then at current per milligram of catalyst and per milligram of platinum. 

Two sets of the 40 Pt/CNT catalyst were used and one set of the 60 Pt 9100 catalyst. Six tests 

were done using the three sets, first with H2SO4 as the electrolyte and KOH second. Results 

showed that the current for both CNT samples was equal, and in some cases greater, than the 

current of the purely platinum sample. Researchers concluded that the 40 Pt/CNT catalyst 
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showed “high activity,” performing well alongside the platinum. However, they also stated that 

the model equation used to measure results behaved questionably. Similar to the previous study, 

the purpose of the following study was to reduce the use of platinum as a catalyst for electrolysis. 

Microbial electrolysis cells sourced from renewable biomass to produce hydrogen were also 

studied. A cathodic catalyst was formed using polyaniline with CNTs. In a plexiglass chamber, 

researchers raised each group to maximum voltage in three cycles, then sealed the chamber and 

ran the electrolysis reaction until the voltage deteriorated to 25% of the maximum. Checks for 

material quality and breakdown were carried out at the beginning and end of testing. The group 

composed of 75% PANI and 25% MWCNTs performed the most comparably to the platinum 

and carbon catalyst. At least four sets of each catalyst group were tested at every voltage level. 

The tests occurred over a period of six months. Researchers concluded that a co-supportive 

structure greatly enhanced platinum’s catalytic ability during methanol reformation reactions, 

specifically by accelerating water activation (Yang et al., 2019). Research performed in 2018 

attempted to design a method for performing oxidation with less precious metal by electrically 

oxidizing methanol by combining platinum and iron deposits on graphene. Only one batch of the 

solution, described as ink, was made. First, the graphene oxide was synthesized from natural 

graphite and add to distilled water. Compounds containing iron and platinum were subsequently 

dispersed in the distilled water along with chloroplatinic acid as a pH balancer. The mixture was 

then dried into a powder, which was added to the methanol fuel cell. Scanning electron 

microscopy was used to examine the powdered catalysts, one with only platinum added to the 

graphene, one with platinum and iron added. The sample with iron showed spherical specks 

relatively evenly dispersed throughout the graphene (the platinum to iron ratio was 2.6:1 

atomically). It was found that that sample performed better in the methanol cell than both the 
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iron-less sample and a platinum-carbon sample. It also held a constant resistance longer than the 

other catalysts (Eshghi, Kheirmand & Sabzehmeidani, 2018). The next paper researched the 

expansion of low-cost catalysts in fuel-cells. The authors performed a minireview of research 

involving various metals, polymers and carbonites used as catalysts in fuel cells and batteries. 

Their four areas of focus were Organic Molecules (Phthalocyanines and Related)-CNT Catalysts 

for Oxygen Reduction Reaction (ORR); Spinel Oxide-CNT-based Bi(tri)functional Catalysts for 

ORR and OER; Group 4 and 5 Oxide-based Oxygen Reduction Catalysts Using Carbon 

Nanotubes as Support in Acidic Media; and Nanocarbon-based Catalysts for Zn-Air Battery, 

Hydrogen Evolution Reaction (HER) and Water Splitting. Experimental procedures from 

multiple studies were outlined in each section as well as author conclusions. Several main 

conclusions drawn were the superior performance of MWCNTs over other variants, the necessity 

of using wet binding methods to best functionalize CNTs, and the promising possibility of oxide 

materials outperforming precious metal catalysts if used in conjunction with CNTs. The article 

closed by recommending MWCNTs over other types of nanotubes in order to decrease the cost 

of fuel cells as well as improve performance (Yang et al., 2019). Another project endeavored to 

detect minute levels of hydrogen gas in nitrogen using MWCNTs overlaid with platinum. 

Pristine and functionalized MWCNTs were drop-casted onto separate interdigitated electrodes, 

with platinum applied to both using a metal sputtering system. The electrodes were then heat to 

550 degrees Celsius and cooled to anneal them. Pre-test, researchers used X-ray diffraction to 

analyze platinum dispersion across the electrodes. In the sealed, room-temperature testing 

chamber, valves controlled the flow of nitrogen and hydrogen to the electrode and resistance 

values were recorded by a multimeter.  
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Researchers stated that the sputtering 

process successfully deposited platinum 

onto the CNT electrodes and concluded that 

the functionalized MWCNTs/Pt exhibited 

higher sensitivity to hydrogen and a faster 

response time than their pristine 

counterparts, as clearly shown in Figure 6 

(Dhall & Jaggi, 2019). Another project 

fabricated a self-supporting CNT 

membrane with Pt nanoparticles for hydrogen adsorption and storage. Researchers formulated a 

platinic salt which they applied to a free-standing MWCNT membrane through 

chronoamperometric electrosynthesis. Average membrane thickness was found via scanning 

electron microscopy to be about 1.8 micrometers. Three forms of the MWCNT-Pt membrane 

were formulated by maintaining voltage potential for the following time periods: 25 seconds, 50 

seconds, and 100 seconds. These time intervals resulted in the deposition of 7, 11.5 and 25.4 

micrograms per cm2 on the three different membrane forms. Multiple spectra and X-ray 

techniques were used to analyze MWCNT membrane structure before and after the application 

of platinum. Using quartz crystal microbalance (QCM) characterization, researchers were able to 

estimate the membrane’s projected hydrogen uptake as a percentage of weight. Researchers used 

four membrane forms, from plain MWCNTs to the membrane with 100 seconds of platinum 

deposition, finding that hydrogen capacity increased in order of least to most platinum-

containing membrane, with the 100-second MWCNT-Pt membrane holding 0.22% of its own 

weight in hydrogen. From this data and analysis, researchers concluded that the MWCNT-Pt 

Figure 6: Comparison of sensitivity of different 
materials for 0.05% H2 concentration (Dhall & 
Jaggi, 2019) 
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membranes were not effective hydrogen storage devices, but that the carbon membranes 

decorated with platinum might be useful supports for catalytic Pt structures. They also noted that 

the platinate salt performed well as a tool for the electrosynthesis of platinum (Tamburri et al., 

2019). Further research by Shanmugam et al. (2014) explored the competence of various co-

supports for platinum catalysts in a methanol steam-reforming reaction performed at different 

temperatures. The platinum was primarily supported by indium oxide. Three porous metal-

oxides, (CeO2, Al2O3 and ZrO2) were used with indium oxide for the co-supported samples. 

Researchers calcined the oxide-mixture was at 350 degrees Celsius for four hours, added the 

platinum and calcined the mixture again at 450 degrees Celsius for six hours. The resulting 

catalytic powder was analyzed using x-ray diffraction. Polyvinyl alcohol was then mixed with 

water, to which the catalyst powder was added, and used to wash-coat the microreactors. These 

reactors were heated to a range of 300-375 degrees Celsius at atmospheric pressure and 

stabilized before water and methanol were passed through sealed catalytically coated chambers 

within them. Methanol conversion rate was calculated using the inlet and outlet methanol 

readings in moles. Lastly, the microreactors were subjected to a 100-hour stability test. 

Researchers determined that CeO2 best supported indium oxide in the platinum catalyst and also 

outperformed the other metal-oxides in the stability test. They also stated that indium oxide 

drastically reduced carbon monoxide biproduct formation when used as catalytic support in 

methanol steam-forming reactions. 

Electrochemical Deposition 

Electrochemical deposition is the use of both electricity and some form of chemical, 

whether solid or liquid, to deposit one substance on another. As an example, one research project 

formed microscopic copper columns using pulse current localized electrochemical deposition, in 
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order to understand the effect of varying voltages and duty cycles on deposition output and 

copper ionization. A platinum wire welded to copper wire formed the micro anode and a copper 

square formed the plate cathode. A glass cylinder feeding silicon tubing and connected to a 

potentiostat served as the microelectrode to record deposition potential. The system was 

submerged in copper sulfate mixed with sulfuric acid and a stepping motor managed 

experimental timing. When the motor was engaged, copper would be deposited on the cathode 

plate, and when it stopped so would the deposition. Deposition duty cycle ranged from 0.1-1 

while voltage ranged from 2.8-3.2V. This formed cylindrical columns on the copper base plate, 

whose morphologies were analyzed using scanning electron microscopy. Three voltage levels 

and four duty cycles produced a range of twelve columns. The lower values of both variables 

produced regular, smooth cylindrical columns, while the higher values produced irregular, 

powdery columns (Lin et al., 2010). 

Hydrogen Production and Water-splitting 

Water-splitting is a promising source of hydrogen. Two thirds of the molecule (by atom 

number) is composed of hydrogen, and the process to split water is relatively easy and non-

hazardous. The studies that follow have explored the subject. One such project synthesized a 

cheap and long-lasting catalytic alternative to precious metals in oxygen and hydrogen producing 

reactions. Their solution is nickel and cobalt alloys. Researchers created a Ni sponge by 

sonicating a combination of nitrogen-rich solutions for one hour and then placing the blend on a 

300-degree Celsius hotplate. An identical process was followed to form the Ni-Co sponge with 

slightly different compounds. The sponges were analyzed using various techniques such as 

powder X-ray diffraction, X-ray photoelectron spectroscopy and X-ray fluorescence. Then, using 

linear sweep voltammograms, researchers completed the oxygen reduction experiment. 
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Secondly, the hydrogen evolution reaction was completed in an alkaline substrate. Finally, a 

water-splitting cell was created using the Ni-Co sponge and a separate Ni-NG sponge, which 

served as the anode. Researchers stated that the sponges remained stable for more than ten hours 

in the water-splitting reaction. Four versions of the nitrogen sponge were manufactured. The first 

contained nitrogen as the only catalytic substance. The three remaining sponges contained Ni-Co 

in differing ratios. The evolution reactions ran at 1.6 volts. Researchers concluded that their 

method for sponge formation (the sonication and transfer to a hotplate) produced well-formed 

samples and could be scaled to an industrial level. They also cited their sponges’ long-term 

durability in the water-splitting reactions as evidence that they may be viable option for fuel-cell 

catalysts (Vineesh et al., 2016). Another paper, as previously mentioned, explored the idea of a 

closed-loop H2 production plant planned by the Japan Technological Research Association of 

Artificial Photosynthetic Chemical Process (ARPChem), a scientific organization working 

towards energy sustainability. Researchers have written a review and summary, both of the H2 

plant system and exploratory research in water-splitting, a current major focus of ARPChem. 

Four components form the self-sustaining plant, depicted in Figure 7 (Yamada & Domen, 2018). 

The core concept on which ARPChem bases its 

hydrogen producing plant is photoelectrodes. A 

dual-purpose solar-powered cell will gather energy 

necessary for water-splitting, which will also occur 

at the cell using the photoelectrodes. A dual 

network of pipes will supply the solar farm: Half 

will transport water to the cells while the other half 

will carry away the gaseous byproduct. The pipe system will carry these byproducts to a gas 

Figure 7: Schematic Diagram of ARPChem 
(Yamada & Domen, 2018) 
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separation plant, the second component, which will remove all water vapor and divide the gas 

into oxygen and hydrogen. Thirdly, an independent solar plant, solely generating electricity, will 

provide power for gas transportation and to the separation plant. Finally, the hydrogen will be 

fed to an unrelated system that, with the additional input of CO2, will produce light olefins (core 

petrochemical components). Ideally, this green-energy plant will exist alongside a conventional, 

carbon-based power plant whose waste products will directly supply the CO2. The authors next 

turn to development of technology. On the practical level, photoelectrodes and photocatalysts 

that would make this self-sufficient system possible do not exist yet. So, the article includes a 

lengthy discussion of potential materials and combinations of materials yielding satisfactory 

catalytic and reductive results, as well as photocell design and filtration techniques. Although 

most of the article followed the format of a literature review and relied on external sources, 

authors did perform one novel experiment testing a 1-square-meter water photo-splitting panel. 

The panel, made of hydrophilized acrylic, was exposed to sunlight for a day and the gas bubbles 

collected using plastic tubing, with actual reaction efficiency results determined by gas 

collection. The authors concluded with a recap of ARPChem’s water-splitting plant goal of a 

self-sufficient closed system and outlook for future materials that might serve as effective 

catalysts and electrodes (Yamada & Domen, 2018). Shi et al. (2015) overviewed 

photoelectrochemical (PEC) cells and different arrangements for them, as well as pros and cons 

of performance based on their structure. Figure 8 depicts an example of a hydrogen fuel cell 

(Liu, 2018).  
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The minireview is divided into four 

sections entitled, respectively, Methods 

for the Evaluation of Overall PEC 

Performance, Methods for the 

Characterization of Optical Properties, 

Methods for the Characterization of 

Charge-Transport Properties and 

Methods for the Characterization of the 

Surface Charge-Transfer Property. The 

first section describes the common 

three-electrode setup, comprised of 

working, counter and reference 

electrodes. A source of light, 

potentiostat connection and inert gas circulation system are also included in the basic PEC cell. 

Authors describe configurations for space-limited cells, cell sealing, different liquid mixtures 

used and gas product collection methods. The second section discusses photo efficiency 

measures, including reflectance and absorption. The third section focuses on the effectiveness 

and transport of electron charge, known as potential. Finally, the charge transfer, similar to the 

charge transport, is examined. The charge transfer efficiency is a measure of energy loss between 

the electrode and the water molecule being split. The authors state that transfer efficiency can 

greatly alters cell performance since it affects the electrode’s ability to function. They referred to 

specific processes and ideas found in the studies, citing nearly eighty reference articles. In their 

summary, the researchers noted that the main measure for a PEC cell’s performance is its ratio of 

Figure 8: Schematic image of a hydrogen evolution 
reaction cell (Liu, 2018) 
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solar power use to hydrogen produced. The importance of precise light intake measurement of a 

cell was also stressed, since poorly measured or quantified photo exposure would spoil research 

results. Another study overviewed and assessed current developments in one-dimensional 

catalysts for hydrogen and oxygen production. Researchers performed a literature review of 

recent advances in nanomaterials for electrolytic reactions. The review is broken into three 

sectional categories: hydrogen evolution reaction, oxygen evolution reaction and bifunctional 

catalysts. These sections were broken into subsections based on catalytic metal content or lack 

thereof. In the first section, novel metal catalyst systems such as cobalt nanowire groupings 

grown on carbon cloth and iron phosphate nanowires supported by titanium plates. Two 

subsections explaining CNT research, with and without the addition of metal components, 

followed, focusing on their stability and potential to outperform strictly metal catalysts. The 

second section, researchers discussed techniques such as elemental doping and the layering of 

metallic nanosheets for increased oxygen evolution reactions. Cobalt and magnesium oxides 

were found to perform said reactions most effectively. The following nonmetal sub-sections 

debated the best combination of CNT types and graphene layers, both doped with nitrogen. 

Lastly, the third section covered dual-use catalysts as well as techniques to transition one to the 

other. Examples included N-doped carbon overlaying nano-scale cobalt deposits and nickel 

selenium nanowires, both of which can reduce oxygen or hydrogen depending on solution 

alkalinity. Researchers stated that to perform hydrogen or oxygen reduction reactions on a mass, 

usable scale, use of cheap and plentiful materials as catalysts, such as those covered in the 

review, was indispensable. They encouraged further study of composite catalysts and exploration 

of new materials to formulate them (Li & Zheng, 2016).  
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Methodology 

*Due to COVID-19, no data was generated and this research project remains incomplete* 

Research Design 

Answering the question of a hydrogen-producing reaction’s efficiency necessitates a 

practical approach, meaning data must be procured and analyzed, and conclusions drawn about 

the performance of the materials involved in order for it to be answered. The practical approach 

is most suitable for addressing the given hypothesis because the question involves uncertainty 

about the outcome a physical process. Therefore, a process must be carried out to confirm or 

disprove the hypothesis. The practical process would have yielded experimental, quantitative 

data collected in a traditional lab setting.  

Procedural and Material Sources 

This project’s advisor designed the experimental procedure, which is a sequential three-

step process. The process would have been carried out by undergraduate students at the lab 

belonging to the Department of Technology in Material Science and Nanotechnology at 

Elizabeth City State University. Platinum and CNTs would have been sourced from Sigma-

Aldrich, a producer of laboratory-grade materials and chemicals. Nine interdigitated chips would 

have been used as electrodes. CNTs and platinum would have been added to six of the chips and 

only platinum will be added to the remaining three, the experimental control group.  

Research Process 

First, CNTs would have been mixed with a substrate, methanol, and deposited on the six 

electrodes using filtration to distribute the nanotubes as evenly as possible across the electrodes. 
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A regular weight to area ratio would have been achieved to ensure comparable samples. The six 

electrodes would then have been divided into groups two of three, each of which would have 

comprised a testing set and be separately treated in the next stage. Secondly, platinum will be 

deposited on the surface of all nine chips. Platinum nanoparticles (at the atomic level) would 

have been deposited on the chips also containing CNTs through electrochemical pulse 

deposition. The goal of this technique was to reduce the amount of platinum used, spreading it as 

thinly as possible without compromising effectiveness. When voltage was applied, platinum 

would have been deposited on the CNTs and ceased being deposited when the voltage was 

removed. A cyclical voltage would have run on a predetermined cycle, applied for a certain 

number of seconds, and removed for a certain number of seconds. Two cycle would have run, 

with different timing settings, thus depositing different amounts of platinum on the CNTs, 

decreasing from the first to second cycle. Bulk platinum would have been deposited on the 

remaining three chips. The third and final step was testing. Each electrode would have been 

individually used, and its data recorded separately. A round-bottomed glass beaker would have 

been filled with DI water and placed on a hotplate with a magnetic stirrer. A working electrode 

(the CNT-Pt electrode) would have been paired with a third reference electrode, along with a 

counter electrode, for each of the nine tests. The counter electrode would have functioned as an 

electrode and the working electrode as a hydrogen electrolyzer.  

Data Collection 

The electrode trios would have been connected to a power source and potentiostat (data-

collection device) via wiring and placed in the DI water. Two trials would then have been run for 

each sample CNT-Pt electrode: chronoamperometry and cyclic voltammetry. In the former trial, 

a voltage would have been applied to the CNT-Pt, and the current produced recorded as a 
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function of voltage, which the computer would have logged. In the latter trial, potential of the 

CNT-Pt electrode would have been increased and decreased, with resulting current recorded as a 

function of time and logged by the computer.  

Data Analysis and Presentation 

Data from all nine trials would have been exported into Microsoft Excel, manipulated and 

charted for clear presentation of results. The statistical function used to present results would 

have been standard deviation. Based on the deviation of each sample, results would have 

determined what amount of platinum nanoparticles could be successfully substituted for a purely 

platinum catalyst or if the substitution could be made at all. 

Discussion and Recommendations 

 Although no results were gathered to be analyzed, several key points emerged from the 

literature review. First, CNTs are a relatively new development, as is their use for energy 

production. The author recommends that the general body of knowledge regarding CNTs 

themselves continue to be expanded. Second, production methods allowing manufacturers to 

control the size, shape, and chemical characteristics of carbon-based nanostructures, including 

CNTs but also other structures such as nano-onions, should be explored and developed. Third, as 

one study highlighted, CNTs have a little-explored potential for hydrogen storage. Finally, a lack 

of research also exists regarding commercial scale use of CNTs. Experiments employing CNTs 

on a larger scale must be completed to further this goal and enable companies to utilize that 

technology. Of course, purely exploratory research is important, but the incredible potential of 

CNTs to aid in green energy production must be addressed. A substantial body of solid, 
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scientifically-backed evidence must be built before companies—and the public—are convinced 

of CNTs’ energy production potential and viability.   
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